cpp Inheritance
Published on: 08 February 2025
Resources
Aim: Construct a program that demonstrates implementation of Inheritance - Single and Multilevel
Practice Exercise 6: Write a program to demonstrate the concept of single inheritance by calculating the density and relative density of fluid.
Theory:
Density ($\rho$) is the ratio of mass ($m$) of the fluid to its volume ($V$). It is given by:
$$ \rho = \frac{m}{V} $$
Relative density (also known as specific gravity) is the ratio of the density of a substance to the density of a reference material, usually water. It is given by:
$$ \text{Relative Density} = \frac{\text{Density of Object}}{\text{Reference Density}} $$
Algorithm:
- Define a class
Density
with float variablesmass
andvolume
. - Create a constructor to initialize
mass
andvolume
. - Define a member function
mDensity()
to computemass/volume
. - Define a derived class
RelativeDensity
, inheriting fromDensity
. - Add a float variable
refDensity
to store the reference density. - Create a constructor to initialize
mass
,volume
, andrefDensity
. - Define a member function
rDensity()
to computemDensity()/refDensity
. - In
main()
, create an object ofRelativeDensity
and an object ofDensity
. - Display mass, volume, and relative density.
Code:
#include <iostream>
using namespace std;
class Density
{
public:
float mass;
float volume;
Density(float m, float v) : mass(m), volume(v) {}
float mDensity()
{
return mass / volume;
}
};
class RelativeDensity : public Density
{
public:
float refDensity;
RelativeDensity(float m1, float v1, float r) : Density(m1, v1), refDensity(r) {}
float rDensity()
{
float density = mDensity();
return density / refDensity;
}
};
int main()
{
RelativeDensity rd(50, 20, 1000);
Density bclass(30, 10);
cout << bclass.mass << endl;
cout << bclass.volume << endl;
cout << rd.mass << endl;
cout << rd.volume << endl;
cout << rd.rDensity() << endl;
return 0;
}
Practice Exercise 7: Write a program to demonstrate the concept of multilevel inheritance by calculating the density, relative density, and weight of fluid.
Theory:
Density ($\rho$) is the ratio of mass ($m$) of the fluid to its volume ($V$). It is given by:
$$ \rho = \frac{m}{V} $$
Relative density (also known as specific gravity) is the ratio of the density of a substance to the density of a reference material, usually water. It is given by:
$$ \text{Relative Density} = \frac{\text{Density of Object}}{\text{Reference Density}} $$
The weight of a fluid is given by:
$$ W = \text{Density} \times \text{Volume} \times g $$
Since relative density is used in weight calculation, we modify the formula as:
$$ W = \text{Relative Density} \times \text{Reference Density} \times \text{Volume} \times g $$
Algorithm:
- Define a class
Density
with float variablesmass
andvolume
. - Create a constructor to initialize
mass
andvolume
. - Define a function
mDensity()
to computemass/volume
. - Define a derived class
RelativeDensity
, inheriting fromDensity
. - Add a float variable
refDensity
and a constructor to initialize it. - Define a function
rDensity()
to computemDensity()/refDensity
. - Define another derived class
Weight
, inheriting fromRelativeDensity
. - Add a float variable
gravity
and a constructor to initialize it. - Define a function
fluidWeight()
to computerDensity() * refDensity * volume * gravity
. - In
main()
, create an object ofWeight
and display mass, volume, density, relative density, and weight.
Code:
#include <iostream>
using namespace std;
class Density
{
public:
float mass;
float volume;
Density(float m, float v) : mass(m), volume(v) {}
float mDensity()
{
return mass / volume;
}
};
class RelativeDensity : public Density
{
public:
float refDensity;
RelativeDensity(float m1, float v1, float r) : Density(m1, v1), refDensity(r) {}
float rDensity()
{
return mDensity() / refDensity;
}
};
class Weight : public RelativeDensity
{
public:
float gravity;
Weight(float m1, float v1, float r, float g) : RelativeDensity(m1, v1, r), gravity(g) {}
float fluidWeight()
{
return rDensity() * refDensity * volume * gravity;
}
};
int main()
{
Weight w(50, 20, 1000, 9.81);
cout << "Mass: " << w.mass << " kg" << endl;
cout << "Volume: " << w.volume << " m^3" << endl;
cout << "Density: " << w.mDensity() << " kg/m^3" << endl;
cout << "Relative Density: " << w.rDensity() << endl;
cout << "Weight of Fluid: " << w.fluidWeight() << " N" << endl;
return 0;
}
Extra Self Practice Material
Self Practice Program 1: Write a program to demonstrate the concept of single inheritance by calculating the kinetic energy of fluid flow.
Theory:
Kinetic energy in fluid mechanics refers to the energy possessed by a moving fluid due to its velocity. It is given by the equation:
$$ KE = \frac{1}{2} m v^2 $$
where $m$ is the mass of the fluid and $v$ is its velocity. Since mass flow rate ($\dot{m}$) is defined as:
$$ \dot{m} = \rho Q $$
where $\rho$ is fluid density and $Q$ is the volumetric flow rate, the kinetic energy per unit time can be expressed as:
$$ KE = \frac{1}{2} \rho Q v^2 $$
Algorithm:
- Start
- Input fluid density ($\rho$), flow rate ($Q$), and velocity ($v$)
- Compute mass flow rate:
$$ \dot{m} = \rho Q $$
- Compute kinetic energy:
$$ KE = \frac{1}{2} \rho Q v^2 $$
- Output the kinetic energy
- End
Code:
#include <iostream>
using namespace std;
class Fluid {
public:
double density; // Fluid density (kg/m³)
double flowRate; // Flow rate (m³/s)
// Parameterized Constructor
Fluid(double d, double q) {
density = d;
flowRate = q;
}
void showType() {
cout << "Fluid System:" << endl;
}
// Calculation function for mass flow rate
double calculateMassFlowRate() {
return density * flowRate;
}
// Calculation function for momentum (takes velocity as input)
void calculateMomentum(double velocity) {
double massFlowRate = calculateMassFlowRate();
double momentum = massFlowRate * velocity;
cout << "Momentum: " << momentum << " kg·m/s" << endl;
}
};
class KineticEnergy : public Fluid {
public:
double velocity; // Fluid velocity (m/s)
// Parameterized Constructor
KineticEnergy(double d, double q, double v) : Fluid(d, q) {
velocity = v;
}
// Calculation function for kinetic energy
void calculateKE() {
double KE = 0.5 * density * flowRate * velocity * velocity;
cout << "Kinetic Energy: " << KE << " Joules" << endl;
}
};
int main() {
// Creating an object using the parameterized constructor
KineticEnergy fluidSystem(1000, 0.05, 3); // density, flow rate, velocity
fluidSystem.showType();
// Calling calculation functions from Fluid class
cout << "Mass Flow Rate: " << fluidSystem.calculateMassFlowRate() << " kg/s" << endl;
fluidSystem.calculateMomentum(fluidSystem.velocity); // Call momentum calculation
// Calling calculation function from derived class
fluidSystem.calculateKE();
return 0;
}
Self Practice Program 2: Write a program to demonstrate multilevel inheritance by calculating the kinetic and potential energy of fluid flow.
Theory:
Fluid systems exhibit both kinetic energy (KE) due to motion and potential energy (PE) due to height.
Fluid
Class:- Represents a fluid with density and flow rate.
-
Uses a constructor to initialize properties.
-
KineticEnergy
Class (Inherits fromFluid
): - Adds velocity and initializes it using a constructor.
-
Computes kinetic energy using:
$$ KE = \frac{1}{2} \times \text{density} \times \text{flowRate} \times \text{velocity}^2 $$ -
PotentialEnergy
Class (Inherits fromKineticEnergy
): - Adds height and initializes it using a constructor.
- Computes potential energy using:
$$ PE = \text{density} \times \text{flowRate} \times 9.81 \times \text{height} $$
Algorithm:
- Start
- Define
Fluid
class withdensity
andflowRate
, initialized via constructor. - Define
KineticEnergy
class (inheritsFluid
), addingvelocity
andcalculateKE()
:
$$ KE = \frac{1}{2} \times \text{density} \times \text{flowRate} \times \text{velocity}^2 $$ - Define
PotentialEnergy
class (inheritsKineticEnergy
), addingheight
andcalculatePE()
:
$$ PE = \text{density} \times \text{flowRate} \times 9.81 \times \text{height} $$ - Instantiate
PotentialEnergy
inmain()
with constructor values. - Call
showType()
,calculateKE()
, andcalculatePE()
. - End
Code:
#include <iostream>
using namespace std;
class Fluid {
public:
double density; // Fluid density (kg/m³)
double flowRate; // Flow rate (m³/s)
// Constructor to initialize fluid properties
Fluid(double d, double q) : density(d), flowRate(q) {}
void showType() {
cout << "Fluid System:\n";
}
};
class KineticEnergy : public Fluid {
public:
double velocity; // Fluid velocity (m/s)
// Constructor to initialize fluid properties and velocity
KineticEnergy(double d, double q, double v) : Fluid(d, q), velocity(v) {}
double calculateKE() {
return 0.5 * density * flowRate * velocity * velocity;
}
};
class PotentialEnergy : public KineticEnergy {
public:
double height; // Height (m)
// Constructor to initialize all properties including height
PotentialEnergy(double d, double q, double v, double h)
: KineticEnergy(d, q, v), height(h) {}
void calculatePE() {
double PE = density * flowRate * 9.81 * height;
cout << "Potential Energy: " << PE << " Joules\n";
}
};
int main() {
// Creating an object with constructor initialization
PotentialEnergy fluidSystem(1000, 0.05, 3, 10); // Density, Flow rate, Velocity, Height
fluidSystem.showType();
cout << "Kinetic Energy: " << fluidSystem.calculateKE() << " Joules\n";
fluidSystem.calculatePE();
return 0;
}
Aim: Construct a program that demonstrates implementation of Inheritance - Multiple, Hierarchical and Hybrid.
Practice Exercise 8: Write a program to demonstrate the concept of multiple inheritance by calculating the density, relative density, and weight of fluid.
Theory:
Density ($\rho$) is the ratio of mass ($m$) of the fluid to its volume ($V$). It is given by:
$$ \rho = \frac{m}{V} $$
Relative density (also known as specific gravity) is the ratio of the density of a substance to the density of a reference material, usually water. It is given by:
$$ \text{Relative Density} = \frac{\text{Density of Object}}{\text{Reference Density}} $$
The weight of a fluid is given by:
$$ W = \text{Density} \times \text{Volume} \times g $$
Using relative density, the formula modifies to:
$$ W = \text{Relative Density} \times \text{Reference Density} \times \text{Volume} \times g $$
Algorithm:
- Define a class
Density
with float variablesmass
andvolume
. - Create a constructor to initialize
mass
andvolume
. - Define a function
mDensity()
to computemass/volume
. - Define another class
RelativeDensity
with a float variablerefDensity
. - Create a constructor to initialize
refDensity
. - Define a function
rDensity()
to computedensity/refDensity
. - Define a derived class
Weight
, inheriting from bothDensity
andRelativeDensity
. - Add a float variable
gravity
and a constructor to initialize it. - Define a function
fluidWeight()
to computerDensity(mDensity()) * refDensity * volume * gravity
. - In
main()
, create an object ofWeight
and display mass, volume, density, relative density, and weight.
Code:
#include <iostream>
using namespace std;
class Density
{
public:
float mass;
float volume;
Density(float m, float v) : mass(m), volume(v) {}
float mDensity()
{
return mass / volume;
}
};
class RelativeDensity
{
public:
float refDensity;
RelativeDensity(float r) : refDensity(r) {}
float rDensity(float density)
{
return density / refDensity;
}
};
class Weight : public Density, public RelativeDensity
{
public:
float gravity;
Weight(float m1, float v1, float r, float g) : Density(m1, v1), RelativeDensity(r), gravity(g) {}
float fluidWeight()
{
float density = mDensity();
return rDensity(density) * refDensity * volume * gravity;
}
};
int main()
{
Weight w(50, 20, 1000, 9.81);
cout << "Mass: " << w.mass << " kg" << endl;
cout << "Volume: " << w.volume << " m^3" << endl;
cout << "Density: " << w.mDensity() << " kg/m^3" << endl;
cout << "Relative Density: " << w.rDensity(w.mDensity()) << endl;
cout << "Weight of Fluid: " << w.fluidWeight() << " N" << endl;
return 0;
}
Practice Exercise 9: Write a program to demonstrate the concept of hierarchical inheritance by calculating the density, relative density, and weight of fluid.
Theory:
Density ($\rho$) is the ratio of mass ($m$) of the fluid to its volume ($V$). It is given by:
$$ \rho = \frac{m}{V} $$
Relative density (also known as specific gravity) is the ratio of the density of a substance to the density of a reference material, usually water. It is given by:
$$ \text{Relative Density} = \frac{\text{Density of Object}}{\text{Reference Density}} $$
The weight of a fluid is given by:
$$ W = \text{Density} \times \text{Volume} \times g $$
Algorithm:
- Define a class
Density
with float variablesmass
andvolume
. - Create a constructor to initialize
mass
andvolume
. - Define a function
mDensity()
to computemass/volume
. - Define a derived class
RelativeDensity
, inheriting fromDensity
. - Add a float variable
refDensity
and a constructor to initialize it. - Define a function
rDensity()
to computemDensity()/refDensity
. - Define another derived class
Weight
, also inheriting fromDensity
. - Add a float variable
gravity
and a constructor to initialize it. - Define a function
fluidWeight()
to computemDensity() * volume * gravity
. - In
main()
, create objects ofRelativeDensity
andWeight
and display mass, volume, density, relative density, and weight.
Code:
#include <iostream>
using namespace std;
class Density
{
public:
float mass;
float volume;
Density(float m, float v) : mass(m), volume(v) {}
float mDensity()
{
return mass / volume;
}
};
class RelativeDensity : public Density
{
public:
float refDensity;
RelativeDensity(float m1, float v1, float r) : Density(m1, v1), refDensity(r) {}
float rDensity()
{
return mDensity() / refDensity;
}
};
class Weight : public Density
{
public:
float gravity;
Weight(float m1, float v1, float g) : Density(m1, v1), gravity(g) {}
float fluidWeight()
{
return mDensity() * volume * gravity;
}
};
int main()
{
RelativeDensity rd(50, 20, 1000);
Weight w(50, 20, 9.81);
cout << "Mass: " << rd.mass << " kg" << endl;
cout << "Volume: " << rd.volume << " m^3" << endl;
cout << "Density: " << rd.mDensity() << " kg/m^3" << endl;
cout << "Relative Density: " << rd.rDensity() << endl;
cout << "Weight of Fluid: " << w.fluidWeight() << " N" << endl;
return 0;
}
Practice Exercise 9: Write a C++ program to demonstrate hybrid inheritance by calculating the density, relative density, and weight of a fluid.
Theory:
Algorithm:
Code:
#include <iostream>
using namespace std;
class Density {
protected:
float mass;
float volume;
public:
Density(float m, float v) : mass(m), volume(v) {}
float mDensity() {
return mass / volume;
}
};
class RelativeDensity : virtual public Density {
protected:
float refDensity;
public:
RelativeDensity(float m, float v, float r) : Density(m, v), refDensity(r) {}
float rDensity() {
return mDensity() / refDensity;
}
};
class Weight : virtual public Density {
protected:
float gravity;
public:
Weight(float m, float v, float g) : Density(m, v), gravity(g) {}
float fluidWeight() {
return mDensity() * volume * gravity;
}
};
class Fluid : public RelativeDensity, public Weight {
public:
Fluid(float m, float v, float r, float g) : Density(m, v), RelativeDensity(m, v, r), Weight(m, v, g) {}
void display() {
cout << "Mass: " << mass << " kg" << endl;
cout << "Volume: " << volume << " m^3" << endl;
cout << "Density: " << mDensity() << " kg/m^3" << endl;
cout << "Relative Density: " << rDensity() << endl;
cout << "Weight of Fluid: " << fluidWeight() << " N" << endl;
}
};
int main() {
Fluid fluid(50, 20, 1000, 9.81);
fluid.display();
return 0;
}
Extra Self Practice Material
Self Practice Program 1: Write a program to demonstrate multiple inheritance by calculating the Reynolds number of fluid flow.
Theory:
The Reynolds number is a dimensionless quantity used to predict fluid flow behavior in a pipe. It determines whether the flow is laminar, transitional, or turbulent based on the relationship between fluid properties and velocity. The Reynolds number is calculated using the formula:
$$ Re = \frac{\rho V D}{\mu} $$
Where:
- $ \rho $ = Fluid density (kg/m³)
- $ V $ = Flow velocity (m/s)
- $ D $ = Pipe diameter (m)
- $ \mu $ = Fluid viscosity (Pa·s)
The velocity $ V $ is calculated as:
$$ V = \frac{Q}{\frac{\pi D^2}{4}} $$
where $ Q $ is the flow rate (m³/s).
Algorithm:
- Define the
Fluid
class with a constructor to initialize density and viscosity. - Define the
Velocity
class with a constructor to initialize flow rate and pipe diameter. - Implement the
calculateVelocity()
function inVelocity
to compute velocity using the given formula. - Define the
ReynoldsNumber
class inheriting from bothFluid
andVelocity
. - Use a constructor in
ReynoldsNumber
to initialize fluid and velocity properties. - Calculate the Reynolds number using the given formula.
$$ Re = \frac{\rho V D}{\mu} $$
- Determine the flow regime based on the Reynolds number:
- $ Re < 2000 $ → Laminar flow
- $ 2000 \leq Re \leq 4000 $ → Transitional flow
- $ Re > 4000 $ → Turbulent flow
- Display the Reynolds number and flow type.
Code:
#include <iostream>
using namespace std;
class Fluid {
public:
double density; // Fluid density (kg/m³)
double viscosity; // Fluid viscosity (Pa.s)
// Constructor for Fluid properties
Fluid(double d, double v) {
density = d;
viscosity = v;
}
};
class Velocity {
public:
double flowRate; // Flow rate (m³/s)
double diameter; // Pipe diameter (m)
// Constructor for Velocity properties
Velocity(double q, double d) {
flowRate = q;
diameter = d;
}
// Function to calculate velocity
double calculateVelocity() {
return flowRate / (3.1416 * diameter * diameter / 4);
}
};
class ReynoldsNumber : public Fluid, public Velocity {
public:
// Constructor to initialize both Fluid and Velocity properties
ReynoldsNumber(double d, double v, double q, double dia)
: Fluid(d, v), Velocity(q, dia) {}
void calculateReynolds() {
double velocity = calculateVelocity();
double Re = (density * velocity * diameter) / viscosity;
cout << "Reynolds Number: " << Re << endl;
if (Re < 2000)
cout << "Flow is Laminar." << endl;
else if (Re > 4000)
cout << "Flow is Turbulent." << endl;
else
cout << "Flow is Transitional." << endl;
}
};
int main() {
// Creating an object with constructor parameters
ReynoldsNumber fluidSystem(1000, 0.001, 0.05, 0.1);
fluidSystem.calculateReynolds();
return 0;
}
Self Practice Program 2: Write a program to demonstrate hierarchical inheritance by calculating the kinetic and potential energy of the fluid flow.
Theory:
Kinetic and potential energy depend on the fluid's properties such as velocity and height. Multiple derived classes can inherit from the same base class.
Formulas:
- Kinetic Energy:
$$ KE = \frac{1}{2} \rho Q V^2 $$
- Potential Energy:
$$ PE = \rho Q g h $$
Algorithm:
- Define the base class
Fluid
with propertiesdensity
andflowRate
. - Define the class
KineticEnergy
to calculate kinetic energy. - Define the class
PotentialEnergy
to calculate potential energy. - Instantiate both classes, set fluid properties, and compute kinetic and potential energies separately.
Code:
#include <iostream>
using namespace std;
class Fluid {
public:
double density; // Fluid density (kg/m³)
double flowRate; // Flow rate (m³/s)
void setFluidProperties(double d, double q) {
density = d;
flowRate = q;
}
void showType() {
cout << "Fluid System:
";
}
};
class KineticEnergy : public Fluid {
public:
double velocity; // Fluid velocity (m/s)
void setVelocity(double v) {
velocity = v;
}
double calculateKE() {
return 0.5 * density * flowRate * velocity * velocity;
}
};
class PotentialEnergy : public Fluid {
public:
double height; // Height (m)
void setHeight(double h) {
height = h;
}
void calculatePE() {
double PE = density * flowRate * 9.81 * height;
cout << "Potential Energy: " << PE << " Joules
";
}
};
int main() {
KineticEnergy ke;
PotentialEnergy pe;
ke.setFluidProperties(1000, 0.05); // Example values: density, flow rate
ke.setVelocity(3); // Example velocity
pe.setFluidProperties(1000, 0.05); // Example values: density, flow rate
pe.setHeight(10); // Example height
ke.showType();
cout << "Kinetic Energy: " << ke.calculateKE() << " Joules
";
pe.calculatePE();
return 0;
}
Self Practice Program 3: Write a program to demonstrate hybrid inheritance by calculating the Reynolds number considering multiple fluid properties and velocity characteristics.
Theory:
Hybrid inheritance combines both multiple and multilevel inheritance concepts. In this case, the Reynolds number is calculated using fluid and velocity properties, where fluid and velocity are inherited separately.
Formula:
$$ Re = \frac{\rho V D}{\mu} $$
Algorithm:
- Define the base class
Fluid
with propertiesdensity
andviscosity
. - Define the class
Velocity
to calculate flow velocity using flow rate and pipe diameter. - Create a derived class
ReynoldsNumber
that inherits from bothFluid
andVelocity
. - Calculate Reynolds number:
$$ Re = \frac{\rho V D}{\mu} $$
- Display the flow regime based on the Reynolds number.
Code:
#include <iostream>
using namespace std;
class Fluid {
public:
double density; // Fluid density (kg/m³)
double viscosity; // Fluid viscosity (Pa.s)
void setFluidProperties(double d, double v) {
density = d;
viscosity = v;
}
};
class Velocity {
public:
double flowRate; // Flow rate (m³/s)
double diameter; // Pipe diameter (m)
void setVelocityProperties(double q, double d) {
flowRate = q;
diameter = d;
}
double calculateVelocity() {
return flowRate / (3.1416 * diameter * diameter / 4);
}
};
class ReynoldsNumber : public Fluid, public Velocity {
public:
void calculateReynolds() {
double velocity = calculateVelocity();
double Re = (density * velocity * diameter) / viscosity;
cout << "Reynolds Number: " << Re << endl;
if (Re < 2000)
cout << "Flow is Laminar.
";
else if (Re > 4000)
cout << "Flow is Turbulent.
";
else
cout << "Flow is Transitional.
";
}
};
int main() {
ReynoldsNumber fluidSystem;
fluidSystem.setFluidProperties(1000, 0.001); // Example values: density, viscosity
fluidSystem.setVelocityProperties(0.05, 0.1); // Example flow rate, diameter
fluidSystem.calculateReynolds();
return 0;
}
References
There may be some AI Generated content in this article used for demonstration purposes.